Switched Doubly-Fed Machine Drive For High Power Applications

Dr. Arijit Banerjee

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

88° East Latitude to 88° West Latitude

High-power motors are 1% of motor population but consume 45\% of total motor energy

Wide range of applications for high power motors

87% of high-power motors are directly connected to ac grid

Drawbacks:

- 30\%-80\% loss in control mechanism
- Reactive power sink from Ac grid perspective

Variable speed drives are advantageous for process control

Estimated annual benefits just in U.S.

- Energy savings - \$2.7B
- Carbon emission reduction - 27 million tons

Anatomy of a variable speed drive

State-of-the-art: High-power variable speed drive topologies

- Series/parallel switches
- Multi-level converters
- Thyristor based Cyclo-converters

Example: Nine megawatt commercial variable speed drive
18 feet

3.3 feet

Volume: ~ 318 cubic meters
Weight: ~ 6 metric tons

Example: Nine megawatt commercial variable speed drive

Example: Nine megawatt commercial variable speed drive

Example: Nine megawatt commercial variable speed drive

Doctoral Thesis objective

Reduce the size of the variable speed drive

\&
provide reactive power support to the grid

Thesis approach: Doubly-fed machines

$$
P_{M}=P_{S}+P_{R}
$$

Switched-Doubly-fed-Machine drive architecture
Switch

Switch is turned "Low" during low-speed, low-power mode

Rotor port provides all the mechanical power

Switch is turned "High" during high-speed, high-power mode

Rotor port processes only the differential power

Size of variable speed drive reduces by two-thirds
 Banerjee et al., IEEE Trans. Industry Applications, 2015

Challenges

- Drive design

Challenges

- Drive design
- Switch realization

Challenges

- Drive design
- Switch realization
- Seamless control

Challenges

- Drive design
- Grid interaction
- Switch realization
- Seamless control

Challenges

- Drive design
- Switch realization
- Seamless control
- Grid interaction
- Drive topology comparison

Challenges

- Drive design
- Switch realization
- Seamless control
- Grid interaction
- Drive topology comparison
- DFM design considerations

Contributions

- Drive design
- Switch realization
- Seamless control
- Grid interaction
- Drive topology comparison
- DFM design considerations

Drive Design: Minimize variable speed drive rating

 subject to:1. Machine operating within its rated condition
2. Matches drive torque-speed requirement
3. Available ac source

Transition

Choice of stator flux drives the entire VSD design space

Low-speed mode stator flux $=$ High-speed mode stator flux

VSD "current rating" is driven by high-speed mode torque

Low-speed mode stator flux $=$ High-speed mode stator flux

VSD "voltage rating" is driven by low-speed mode torque

Low-speed mode stator flux $=0.75 \times$ High-speed mode stator flux

Non-idealities in DFM lead to design challenges for remaining within constraints

A. Banerjee, M. S. Tomovich, S. B. Leeb and J. L. Kirtley, "Power Converter Sizing for a Switched Doubly Fed Machine Propulsion Drive," in IEEE Transactions on Industry Applications, vol. 51, no. 1, pp. 248-258, Jan.-Feb. 2015.

Contributions

- Drive design
- Switch realization
- Seamless control
- Grid interaction
- Drive topology comparison
- DFM design considerations

Switch realization critical for smooth performance

Example: Dc-to-ac mode transition

Initially :

stator connected to dc source
Finally :
stator connected to ac source
Goal :
Natural commutation of all dc side SCRs simultaneously

Condition for natural commutation of A phase SCR

Initially :

stator connected to dc source Finally :
stator connected to ac source Goal :

Natural commutation of all dc side SCRs simultaneously

Condition for natural commutation of B phase SCR

Initially :

stator connected to dc source Finally :
stator connected to ac source Goal :

Natural commutation of all dc side SCRs simultaneously

Condition for natural commutation of C phase SCR

Natural commutation of ABC phase SCRs simultaneously

Transfer scheme: dc to ac
\checkmark S1 and S2 should not be ON simultaneously
\checkmark S1 and S2 should not be OFF simultaneously
\checkmark All phases switch together
\checkmark Minimal "supporting" circuitry

* Minimal perturbation on shaft behavior

Prototype SCR-based Transfer Switch

Experimental Result: Dc to Ac Source Transition

Alternative transfer switch topology

Banerjee et. al. "Solid-State Transfer Switch Topologies for a Switched Doubly Fed Machine Drive," in IEEE Transactions on Power Electronics, Aug. 2016.

Banerjee et. al., "Bumpless Automatic Transfer for a Switched-Doubly-Fed-Machine Propulsion Drive," in IEEE Transactions on Industry Applications, July-Aug. 2015.

Contributions

- Drive design
- Switch realization
- Seamless control
- Grid interaction
- Drive topology comparison
- DFM design considerations

Challenge: Seamless performance across entire speed range

Common framework for control and transition analysis

State variables

Stator (2)
Rotor (2)
Shaft (1)
Stator flux

- magnitude
- angle

Stator flux transition model

Disturbance

$$
\begin{aligned}
& {\left[\begin{array}{ll}
V_{s o} & \omega_{s \mathrm{~s}}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0
\end{array}\right], \text {, low speed mode (shorted) } } \\
& {\left[\begin{array}{ll}
0.1 & 0
\end{array}\right], \text { low speed mode (dc source) } } \\
& {\left[\begin{array}{ll}
1 & 1
\end{array}\right], \text { high speed mode (ac grid) } }
\end{aligned}
$$

Initial condition
Pre-transition stator flux magnitude Instant of transition (SCR switch)

Phase plane captures machine dynamics in low speed mode

Banerjee et al., IEEE Trans. Industry Applications, 2015
-- , ITEC, 2015

Phase plane captures machine dynamics in high speed mode

Example: Low-to-high speed mode transition

Switch timing is critical for smoother transition

Magnitude
(ϕ_{X}, ϕ_{Y})

Autonomous behavior during mode transition using the switch timing

Magnitude (ϕ_{X}, ϕ_{Y})

$\downarrow \begin{gathered}\text { Torque } \\ \downarrow \text { bump }\end{gathered}$

Maximum damping enables smooth transition from AC grid perspective

Mode Transition: Mapping of Operating Point on the Stateplane

Low-speed operation
High-speed operation

Contributions

- Drive design
- Switch realization
- Seamless control
- Grid interaction
- Drive topology comparison
- DFM design considerations

Laboratory-scaled power system as experimental setup Generators (AC Grid)

Switch

Machine + Load

Designed and built entire power system as laboratory setup

Generators (1.4 kW)

6 Machines
5 Control platforms (TI, NI, Matlab RTW, PSoC)
3 Data acquisition systems
2 Converters + Filters

Experimental Results: Full Torque/Speed Range Operation

Experimental Results: Full Torque/Speed Range Operation

Experimental Results: Full Torque/Speed Range Operation

Experimental result: Seamless mechanical port

Experimental result: Seamless mechanical port

Experimental Results: Full Torque/Speed Range Operation

Experimental Results: Full Torque/Speed Range Operation

Experimental result: Seamless electrical ports

Experimental Results: Full Torque/Speed Range Operation

Experimental Results: Speed Reference Oscillation

Experimental Results: Load Torque Oscillation

Conclusion

AC Grid
 Switched Doubly fed machine drive

- Two-thirds size reduction
- Grid-friendly
- Better efficiency
- Reduced cost
- Better reliability

Publications

Power converter sizing

Control architecture

8-SCR Based transfer switch

Fault tolerant capability

Comparison of topology

Grid-friendly operation

Journal

Sep '16

TTEC2015

Acknowledgment

Dr. Manny Landsman (Fellowship)

Mike Tomovich, S.M.

The Grainger Foundation

KFAS

مـؤسسة الــكويتللـتـقدما الـ علمي

MIT Skoltech Initiative

Prof. J. Kirtley

Prof. S. Leeb

Prof. J. Lang

Prof. D. Perreault

Massachusetts Institute of Technology

Thank you!

 BaCKUP BaCRUPExperimental Results: Full Torque/Speed Range Operation

Experimental Results: Full Torque/Speed Range Operation

74
Time (s)

Future Work

- DFM electromagnetic design optimization
- Evaluation in a MW-scale application
- Brushless operation

Transportation

Industrial Drives

Energy Harvesting

Contributions

- Design methodology of a switched-DFM drive based on a required drive torque capability
- Solid-state transfer switch architectures for on-the-fly reconfiguration of the DFM
- Control platform for a seamless operation of the drive at the mechanical and electrical ports
- Enabling reactive power support to the grid without adding extra power electronics
- Performance comparison of different switched-DFM drive topology leading to machine design guidelines

Additional Publications

Single sided induction heating

Uniform heating + optimized winding

MIT Cheetah robotic actuator design

IECON'2013

APEF
 2014

(To be submitted)

ICEM 2012

Comparison of induction motor technology

Specification: 1250 HP, 4160 V, 900 rpm, Air-cooled

TECO Westinghouse JH12508 Induction Motor
GE $8411 S$ Slip-ring Induction Motor

Comparison: PMSG + full converter relative to DFM + partial

 converter for wind power generation

Polinder et al., IEEE Transactions on Energy Conversion, Sept. 2006.

\$4.5 B Worldwide Market in MV Motors

The World Market for Medium Voltage Motors

Market Breakdown in 2012 - Industry Sector by Revenues (\$M) and Growth (\%)

Source: IHS Market breakdown in 2012. Industry Sector by Revenues (\$M) and Growth (\%)

Research theme

Information
World

Motors + Energy Storage

Medium voltage motors market: \$4.5 B Worldwide

Revenues
 2012 Revenues
 \qquad
 Growth

Electromechanical Actuators 101

2 Degrees of Freedom

3 Degrees of Freedom

4 Degrees of Freedom

Torque production mechanism and control

Stator flux

- aided by the dc source
- controlled by the rotor d-axis current

Torque current

- controlled by the rotor q-axis current

Stator flux

- controlled by the rotor d-axis current

Torque current

- controlled by the rotor q-axis current

Example 1:3.3 kV, 20 MW Induction Motor Drive (Propulsion application)

Source: ACS6000, MV7000 Medium Voltage Drive Brochure; Lewis et.al, Advanced Induction Motor

Example 2 : 3.7 kV, 20 MW Induction Motor Drive

Source: Hebner et.al, Design and analysis of a 20 MW Propulsion power train, 2004

Ship efficiency improvement due to electrification

Enabling technology drives what is possible with electromechanical energy systems

Power

Semiconductor
Devices
Power

Networks

Additive
Manufacturing
(e.g. 3d printing)

Seamless dynamic performance across entire speed range

Time (s)

Severe Test: Mimics a ship in a turbulent weather

Stable AC generator under severe mode swinging

Proposed power flow architecture: Prior Art

Normalized Speed

Power Electronic Devices

Experimental results: Stator flux transition

Severe Test: Mimics a ship in a turbulent weather

Stable AC generator under severe mode swinging

Transition trajectory causes massive power swing at the grid and torque bump at the shaft

Sizing comparison: High-power motors and variable speed drive

Medium voltage High Efficiency Induction Motors, TECO Westinghouse price book ABB ACS1000 Industrial Drive

Machine design: 30 MW, 200 rpm, 4160 V, 60 Hz

Parameter	Value
No. of pole	54
Stator rated current	2775 A
Rotor-to-stator turns ratio	2
Air gap flux density	0.75 T
Stator and rotor volume current densities	$6.5 \mathrm{~A} / \mathrm{mm}^{2}$
Active length	2.55 m
Stator outside diameter	2.75 m
Rotor inside diameter	2.4 m
Rotor magnetizing	480 A
current	

Rotodrive: Induction/grid connected mode

Fig. 1 Principle of Rotodrive and operating modes

Fig. 2 Experimental rotor RMS voltage and current against speed, constant torque
L. Morel IAS Transaction, Jul 1998

Used as discrete operation regimes

Fig.2. DFIM electric configuration
Hydro-electric power station

François BONNET, ECPE, Sept 2007

Fig. 1. Configuration of a DFIM system.
Starting method for drives
Xibo Yuan, IAS Transaction, June 2011

Ship Propulsion: Synchronous/grid connected mode

Figure 5: Doubly-fed machine (DFM) for propulsion

Figure 6: Normalized DFM rotor power - unity on the vertical and horizontal axes correspond to maximum power P_{o} and speed Ω_{0}.

Steven Leeb \& James Kirtley et al., Naval Eng. Journal, June 2010

Seamless grid interaction to ensure stability of the ac grid

Seamless grid interaction to ensure stability of the ac grid

Solution: No intermittent energy storage in the variable speed drive

Coordinated Front-end converter control

Contributions

- Drive design
- Switch realization
- Seamless control
- Grid interaction
- Drive topology comparison
- DFM design considerations

