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High-power motors are 1% of motor population but consume 
45% of total motor energy
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Wide range of applications for high power motors
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or
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High MW Converters, ABB, 2014



87% of high-power motors are directly connected to ac grid
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Process

Control

Fixed 
Amplitude

&
Frequency

Drawbacks:
• 30% - 80% loss in control mechanism
• Reactive power sink from Ac grid perspective



Variable speed drives are advantageous for process control 
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Control

The Office of EERE, DOE , 2015

Process

Control

Estimated annual benefits just in U.S. 
• Energy savings - $2.7B 
• Carbon emission reduction - 27 million tons



Anatomy of a variable speed drive
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State-of-the-art: High-power variable speed drive topologies

8Kouro et al., IEEE IAS,  2012

• Series/parallel 
switches

• Multi-level 
converters

• Thyristor based 
Cyclo-converters



Example: Nine megawatt commercial variable speed drive

9MV7000 Brochure

18 feet

Volume: ~ 318 cubic meters
Weight: ~ 6 metric tons

3.3 feet



Example: Nine megawatt commercial variable speed drive

10MV7000 Brochure

Multiple Switches & Low Switching 
Frequency



Example: Nine megawatt commercial variable speed drive

11MV7000 Brochure

Bulky Filter



Example: Nine megawatt commercial variable speed drive

12MV7000 Brochure

Significant Cooling



Doctoral Thesis objective
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Reduce the size of the variable speed drive

&

provide reactive power support to the grid



Thesis approach: Doubly-fed machines
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Pena et al., IEE Proceedings,  1996



Switched-Doubly-fed-Machine drive architecture
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Banerjee et al., IEEE IAS, 2015



Switch is turned "Low" during low-speed, low-power mode
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Rotor port provides all the mechanical power
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Switch is turned "High" during high-speed, high-power mode
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Size of variable speed drive reduces by two-thirds
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Challenges
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• Drive design 
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Contributions
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• Drive design 
• Switch realization
• Seamless control

• Grid interaction
• Drive topology comparison
• DFM design considerations



Drive Design: Minimize variable speed drive rating
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Current rating

Dc voltage

Transition
speedReactive power

capability

Maximum
speedVoltage rating

subject to:
1. Machine operating within its rated condition
2. Matches drive torque-speed requirement
3. Available ac source



Choice of stator flux drives the entire VSD design space
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VSD “current rating” is driven by high-speed mode torque
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VSD “voltage rating” is driven by low-speed mode torque
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Non-idealities in DFM lead to design challenges for 
remaining within constraints
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A. Banerjee, M. S. Tomovich, S. B. Leeb and J. L. Kirtley, "Power 

Converter Sizing for a Switched Doubly Fed Machine Propulsion Drive," 

in IEEE Transactions on Industry Applications, vol. 51, no. 1, pp. 248-258, 

Jan.-Feb. 2015.



Contributions
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• Drive design 
• Switch realization
• Seamless control

• Grid interaction
• Drive topology comparison
• DFM design considerations



Switch realization critical for smooth performance
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Example: Dc-to-ac mode transition
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DC AC

Initially :
stator connected to dc source
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Condition for natural commutation of A phase SCR
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Condition for natural commutation of B phase SCR
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Condition for natural commutation of C phase SCR
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Natural commutation of ABC phase SCRs simultaneously
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 S1 and S2 should not be ON simultaneously
 S1 and S2 should not be OFF simultaneously
 All phases switch together
 Minimal “supporting” circuitry
 Minimal perturbation on shaft behavior

Transfer scheme: dc to ac

DC AC



Prototype SCR-based Transfer Switch
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Experimental Result: Dc to Ac Source Transition
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Alternative transfer switch topology
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Banerjee et. al. "Solid-State Transfer Switch 

Topologies for a Switched Doubly Fed Machine 

Drive," in IEEE Transactions on Power 

Electronics, Aug. 2016.

Banerjee et. al., "Bumpless Automatic Transfer 

for a Switched-Doubly-Fed-Machine 

Propulsion Drive," in IEEE Transactions on 

Industry Applications, July-Aug. 2015.



Contributions
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• Drive design 
• Switch realization
• Seamless control

• Grid interaction
• Drive topology comparison
• DFM design considerations



Challenge: Seamless performance across entire speed range
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Common framework for control and transition analysis
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Stator flux transition model
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Phase plane captures machine dynamics in low speed mode
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Phase plane captures machine dynamics in high speed mode
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Example: Low-to-high speed mode transition
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Switch timing is critical for smoother transition
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Autonomous behavior during mode transition using the 
switch timing 
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Maximum damping enables smooth transition from AC grid 
perspective
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Mode Transition: Mapping of Operating Point on the State-
plane
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Contributions
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• Drive design 
• Switch realization
• Seamless control

• Grid interaction
• Drive topology comparison
• DFM design considerations



Laboratory-scaled power system as experimental setup
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Designed and built entire power system as laboratory setup
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Experimental Results: Full Torque/Speed Range Operation
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Experimental Results: Full Torque/Speed Range Operation

58

0 5 10 15
-2000

0

2000

 

 

0 5 10 15
-5

0

5

 

 

Reference

Actual

Rotor speed (rpm)

Time (s)

Drive torque (Nm)



Experimental Results: Full Torque/Speed Range Operation
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Experimental result: Seamless mechanical port
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Experimental result: Seamless mechanical port
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Experimental Results: Full Torque/Speed Range Operation
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Experimental Results: Full Torque/Speed Range Operation
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Experimental result: Seamless electrical ports
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Experimental Results: Full Torque/Speed Range Operation
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Experimental Results: Speed Reference Oscillation
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Experimental Results: Load Torque Oscillation
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Conclusion
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• Two-thirds size reduction
• Grid-friendly
• Better efficiency
• Reduced cost
• Better reliability

Switched Doubly fed 
machine drive



Publications
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Power converter sizing

Control architecture

12-SCR Based transfer switch

Fault tolerant capability

Comparison of topology

Grid-friendly operation 

Conference Journal

2014

Jan ’15

Jul ’15

Mar ’15

2016 Sep ’168-SCR Based transfer switch
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It’s about the journey 
not the destination

Thank you!



Back up
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Experimental Results: Full Torque/Speed Range Operation
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Experimental Results: Full Torque/Speed Range Operation
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Future Work
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Energy HarvestingTransportation Industrial Drives

• DFM electromagnetic design optimization
• Evaluation in a MW-scale application
• Brushless operation



Contributions
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• Design methodology of a switched-DFM drive based on a required
drive torque capability

• Solid-state transfer switch architectures for on-the-fly reconfiguration
of the DFM

• Control platform for a seamless operation of the drive at the
mechanical and electrical ports

• Enabling reactive power support to the grid without adding extra
power electronics

• Performance comparison of different switched-DFM drive topology
leading to machine design guidelines



Additional Publications
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(To be submitted)

Single sided induction heating

Uniform heating + optimized winding

MIT Cheetah robotic actuator design

2014

IECON'2013

2012



Comparison of induction motor technology
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Comparison: PMSG + full converter relative to DFM + partial 
converter for wind power generation
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$4.5 B Worldwide Market in MV Motors

Market breakdown in 2012. Industry Sector by Revenues ($M) and Growth (%)

Agarwal et al., NIST/DOE Workshop NGEM, 2014



Research theme
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Motors + Energy Storage
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Medium voltage motors market: $4.5 B Worldwide
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Electromechanical Actuators 101
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2 Degrees of Freedom 3 Degrees of Freedom 4 Degrees of Freedom



Torque production mechanism and control
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Stator flux
 aided by the dc source
 controlled by the rotor d-axis current

Torque current
 controlled by the rotor q-axis current

Stator flux
 controlled by the rotor d-axis current

Torque current
 controlled by the rotor q-axis current

Low speed induction Low speed synchronous 



Example 1 : 3.3 kV, 20 MW Induction Motor Drive 
(Propulsion application)

Volume: 28 Cubic Meters
Weight: 11 Metric Tons

Water-Cooled

5

Source: ACS6000, MV7000 Medium Voltage Drive Brochure; Lewis et.al, Advanced Induction Motor

Volume: 35 Cubic Meters
Weight: 89 Metric Tons

Air-Cooled AIM, 180 rpm



Example 2 : 3.7 kV, 20 MW Induction Motor Drive

Volume: 19 Cubic Meters
Weight: 16 Metric Tons

Water-Cooled

5

Source: Hebner et.al, Design and analysis of a 20 MW Propulsion power train, 2004

Volume: 49 Cubic Meters
Weight: 97 Metric Tons

Water-Cooled PM, 150 rpm



Ship efficiency improvement due to electrification 
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Enabling technology drives what is possible with 
electromechanical energy systems

89
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Seamless dynamic performance across entire speed range
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Stable AC generator under severe mode swinging
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Proposed power flow architecture: Prior Art
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Power Electronic Devices
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Experimental results: Stator flux transition
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Severe Test: Mimics a ship in a turbulent weather
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Stable AC generator under severe mode swinging
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Transition trajectory causes massive power swing at the 
grid and torque bump at the shaft
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Sizing comparison: High-power motors and variable speed 
drive
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Motors Drive

Specification: 1250 HP, 4160 V, Air-cooled

Medium voltage High Efficiency Induction Motors, TECO Westinghouse price book
ABB ACS1000 Industrial Drive



Machine design: 30 MW, 200 rpm, 4160 V, 60 Hz
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Parameter Value

No. of pole 54

Stator rated 
current

2775 A

Rotor-to-stator 
turns ratio

2

Air gap flux density 0.75 T

Stator and rotor 
volume current 

densities

6.5 A/mm2

Active length 2.55 m

Stator outside 
diameter

2.75 m

Rotor inside 
diameter

2.4 m

Rotor magnetizing 
current

480 A



Rotodrive: Induction/grid connected mode

12

a, b: Mechanical Switch

L. Morel IAS Transaction, Jul 1998



Used as discrete operation regimes
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Hydro-electric power station Starting method for drives

Xibo Yuan, IAS Transaction, June 2011François BONNET, ECPE, Sept 2007



Ship Propulsion: Synchronous/grid connected mode
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Steven Leeb & James Kirtley et al., Naval Eng. 
Journal, June 2010 



Seamless grid interaction to ensure stability of the ac grid
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Seamless grid interaction to ensure stability of the ac grid

105

0

-0.5

0.5

1

1.5

0.5 1 1.50
Po

w
er

(n
o

rm
al

iz
ed

)
Speed (normalized)

PRPS

PG
PG

Solution: No intermittent energy storage in the variable 
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Coordinated Front-end converter control
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Contributions
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• Drive design 
• Switch realization
• Seamless control

• Grid interaction
• Drive topology comparison
• DFM design considerations


