Switched Doubly-Fed Machine Drive For High Power Applications

Dr. Arijit Banerjee

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

27th February, 2017

88° East Latitude to 88° West Latitude

High-power motors are 1% of motor population but consume 45% of total motor energy

Wide range of applications for high power motors

High MW Converters, ABB, 2014

87% of high-power motors are directly connected to ac grid

Drawbacks:

- 30% 80% loss in control mechanism
- Reactive power sink from Ac grid perspective

Variable speed drives are advantageous for process control

Estimated annual benefits just in U.S.

- Energy savings **\$2.7B**
- Carbon emission reduction 27 million tons

The Office of EERE, DOE , 2015

Anatomy of a variable speed drive

State-of-the-art: High-power variable speed drive topologies

- Series/parallel switches
- Multi-level converters
- Thyristor based
 Cyclo-converters

18 feet

Volume: ~ 318 cubic meters Weight: ~ 6 metric tons

Multiple Switches & Low Switching Frequency

Bulky Filter

Significant Cooling

Doctoral Thesis objective

Reduce the size of the variable speed drive &

provide reactive power support to the grid

Thesis approach: Doubly-fed machines

Pena et al., IEE Proceedings, 1996

Morel et al., IEE Proceedings, 1998 Leeb et al., Naval Engineers Journal, 2010 Banerjee et al., IEEE IAS, 2015 **15**

Switch is turned "Low" during low-speed, low-power mode

Rotor port provides all the mechanical power

Rotor port processes only the differential power

Size of variable speed drive reduces by two-thirds

• Drive design

- Drive design
- Switch realization

- Drive design
- Switch realization
- Seamless control

- Drive design
- Switch realization
- Seamless control

• Grid interaction

- Drive design
- Switch realization
- Seamless control

- Grid interaction
- Drive topology comparison

- Drive design
- Switch realization
- Seamless control

- Grid interaction
- Drive topology comparison
- DFM design considerations

Contributions

- Drive design
- Switch realization
- Seamless control
- Grid interaction
- Drive topology comparison
- DFM design considerations

Drive Design: Minimize variable speed drive rating subject to:

- 1. Machine operating within its rated condition
- 2. Matches drive torque-speed requirement
- 3. Available ac source

Choice of stator flux drives the entire VSD design space

Low-speed mode stator flux = High-speed mode stator flux

$$V = \frac{d}{dt}$$
 flux

= relative speed X flux

VSD "current rating" is driven by high-speed mode torque

Low-speed mode stator flux = High-speed mode stator flux

VSD "voltage rating" is driven by low-speed mode torque

Low-speed mode stator flux = 0.75 X High-speed mode stator flux

Non-idealities in DFM lead to design challenges for remaining within constraints

A. Banerjee, M. S. Tomovich, S. B. Leeb and J. L. Kirtley, "Power Converter Sizing for a Switched Doubly Fed Machine Propulsion Drive," in *IEEE Transactions on Industry Applications*, vol. 51, no. 1, pp. 248-258, Jan.-Feb. 2015.

- Drive design
 - Switch realization
 - Seamless control
- Grid interaction
- Drive topology comparison
- DFM design considerations

Switch realization critical for smooth performance

Example: Dc-to-ac mode transition

DC AC

Initially :

stator connected to dc source **Finally :**

stator connected to ac source

Goal :

Natural commutation of all dc side SCRs simultaneously

Condition for natural commutation of A phase SCR

Initially :

stator connected to dc source **Finally :**

stator connected to ac source **Goal :**

Natural commutation of all dc side SCRs simultaneously

Condition for natural commutation of **B** phase SCR

Condition for natural commutation of C phase SCR

Natural commutation of ABC phase SCRs simultaneously

DC

AC

VAC

 ω_{AC}

ommutatior

- Natura

B

Transfer scheme: dc to ac

- ✓ S1 and S2 should not be *ON* simultaneously
- ✓ S1 and S2 should not be OFF simultaneously
- ✓ All phases switch together
- ✓ Minimal "supporting" circuitry
- Minimal perturbation on shaft behavior

Prototype SCR-based Transfer Switch

Experimental Result: Dc to Ac Source Transition

Alternative transfer switch topology

Banerjee et. al. "Solid-State Transfer Switch Topologies for a Switched Doubly Fed Machine Drive," in *IEEE Transactions on Power Electronics*, Aug. 2016.

Banerjee et. al., "Bumpless Automatic Transfer for a Switched-Doubly-Fed-Machine Propulsion Drive," in IEEE Transactions on Industry Applications, July-Aug. 2015.

- Drive design
- Switch realization
- Seamless control
- Grid interaction
- Drive topology comparison
- DFM design considerations

Challenge: Seamless performance across entire speed range

Common framework for control and transition analysis

Stator flux transition model

Phase plane captures machine dynamics in low speed mode

Banerjee et al., IEEE Trans. Industry Applications, 2015 -- , ITEC, 2015 47

Phase plane captures machine dynamics in high speed mode

Example: Low-to-high speed mode transition

Switch timing is critical for smoother transition

Autonomous behavior during mode transition using the switch timing

Maximum damping enables smooth transition from AC grid perspective

Mode Transition: Mapping of Operating Point on the Stateplane

Contributions

- Drive design
- Switch realization
- Seamless control

- Grid interaction
- Drive topology comparison
- DFM design considerations

Laboratory-scaled power system as experimental setup

Generators (AC Grid)

Switch

Designed and built entire power system as laboratory setup

Generators (1.4 kW)

- 6 Machines
- 5 Control platforms (TI, NI, Matlab RTW, PSoC)
- 3 Data acquisition systems
- 2 Converters + Filters

Experimental result: Seamless mechanical port

Experimental result: Seamless mechanical port

Experimental result: Seamless electrical ports

Experimental Results: Speed Reference Oscillation

Experimental Results: Load Torque Oscillation

Conclusion

AC Grid

Switched Doubly fed machine drive

Load

- Two-thirds size reduction
- Grid-friendly
- Better efficiency
- Reduced cost
- Better reliability

Publications

Power converter sizing

Control architecture

12-SCR Based transfer switch

8-SCR Based transfer switch

Fault tolerant capability

Comparison of topology

Grid-friendly operation

Conference

APEC 2013

APEC. 2014

APEC. 2016

69

Journal

Sep '16

Acknowledgment

The Grainger Foundation

Dr. Manny Landsman (Fellowship)

North Surakit., S.B.

Mike Tomovich, S.M.

MIT Skoltech Initiative

Arthur Chang, Ph.D.

Prof. Al Avestruz

Prof. J. Kirtley

Prof. S. Leeb

Prof. J. Lang

Prof. D. Perreault

Massachusetts Institute of Technology

It's about the journey not the destination

Thank you!

Back up
Experimental Results: Full Torque/Speed Range Operation

Experimental Results: Full Torque/Speed Range Operation

74

Future Work

- DFM electromagnetic design optimization
- Evaluation in a MW-scale application
- Brushless operation

Transportation

Industrial Drives

Energy Harvesting

Contributions

• Design methodology of a switched-DFM drive based on a required drive torque capability

• Solid-state transfer switch architectures for on-the-fly reconfiguration of the DFM

• Control platform for a seamless operation of the drive at the mechanical and electrical ports

 Enabling reactive power support to the grid without adding extra power electronics

• Performance comparison of different switched-DFM drive topology leading to machine design guidelines

Additional Publications

Single sided induction heating

Uniform heating + optimized winding

IECON'2013

MIT Cheetah robotic actuator design

Comparison of induction motor technology

Specification: 1250 HP, 4160 V, 900 rpm, Air-cooled

TECO Westinghouse JH12508 Induction Motor

GE 8411S Slip-ring Induction Motor

Comparison: PMSG + full converter relative to DFM + partial converter for wind power generation

Specification: 3 MW, 90 rpm

Polinder et al., IEEE Transactions on Energy Conversion, Sept. 2006.

\$4.5 B Worldwide Market in MV Motors

The World Market for Medium Voltage Motors

Market Breakdown in 2012 - Industry Sector by Revenues (\$M) and Growth (%)

Source: IHS Market breakdown in 2012. Industry Sector by Revenues (\$M) and Growth (%)

Agarwal et al., NIST/DOE Workshop NGEM, 2014

Research theme

Physical World

Motors + Energy Storage

Medium voltage motors market: \$4.5 B Worldwide

Industrial sectors

Electromechanical Actuators 101

Torque production mechanism and control

Stator flux

- aided by the dc source
- controlled by the rotor d-axis current

Torque current

controlled by the rotor q-axis current

Low speed induction

Stator flux

controlled by the rotor d-axis current

Torque current

controlled by the rotor q-axis current

Example 1 : 3.3 kV, 20 MW Induction Motor Drive (Propulsion application)

Source: ACS6000, MV7000 Medium Voltage Drive Brochure; Lewis et.al, Advanced Induction Motor

Example 2 : 3.7 kV, 20 MW Induction Motor Drive

Source: Hebner et.al, Design and analysis of a 20 MW Propulsion power train, 2004

Ship efficiency improvement due to electrification

Enabling technology drives what is possible with electromechanical energy systems

Seamless dynamic performance across entire speed range

Severe Test: Mimics a ship in a turbulent weather

Stable AC generator under severe mode swinging

Proposed power flow architecture: Prior Art

Power Electronic Devices

Experimental results: Stator flux transition

Severe Test: Mimics a ship in a turbulent weather

Stable AC generator under severe mode swinging

Transition trajectory causes massive power swing at the grid and torque bump at the shaft

Sizing comparison: High-power motors and variable speed drive

Medium voltage High Efficiency Induction Motors, TECO Westinghouse price bookABB ACS1000 Industrial Drive99

Machine design: 30 MW, 200 rpm, 4160 V, 60 Hz

Rotodrive: Induction/grid connected mode

a, b: Mechanical Switch

Fig. 1 Principle of Rotodrive and operating modes

Fig.2 Experimental rotor RMS voltage and current against speed, constant torque

L. Morel IAS Transaction, Jul 1998

Used as discrete operation regimes

Fig.2. DFIM electric configuration

Hydro-electric power station

François BONNET, ECPE, Sept 2007

Fig. 1. Configuration of a DFIM system.

Starting method for drives

Xibo Yuan, IAS Transaction, June 2011

Ship Propulsion: Synchronous/grid connected mode

Figure 5: Doubly-fed machine (DFM) for propulsion

Figure 6: Normalized DFM rotor power – unity on the vertical and horizontal axes correspond to maximum power P_o and speed Ω_o .

Steven Leeb & James Kirtley et al., Naval Eng. Journal, June 2010

Seamless grid interaction to ensure stability of the ac grid

Seamless grid interaction to ensure stability of the ac grid

Solution: No intermittent energy storage in the variable speed drive

Coordinated Front-end converter control

Contributions

- Drive design
- Switch realization
- Seamless control

- Grid interaction
- Drive topology comparison
- DFM design considerations