

A 94.2%-Peak-Efficiency 1.53A Direct-Battery-Hook-Up Hybrid Dickson Switched-Capacitor DC-DC Converter with Wide Continuous Conversion Ratio in 65nm CMOS

<u>Wen-Chuen Liu</u>, Pourya Assem, Yutian Lei, Pavan Hanumolu, Robert Pilawa-Podgurski

University of Illinois Urbana-Champaign

Motivation

- High conversion ratio
- High current / power density
- High efficiency

WIDE-range regulation

Performance Index

- Conventional SC converter
 - Goal 1 but only at some <u>discrete</u> high ratios
 - Prior arts addressed it using multiple stages but at the sacrifice of Goal 2

Performance Index

- Conventional buck converters
 - Hard to achieve Goals 1 and 2, due to the large device voltage stress relative to the output
 - High voltage rating: higher R_{ds,on} per area

Hybrid SC Converter

- No more charge redistribution loss
 - Reduces the RMS and peak capacitor current
 - Low R_o and independent of switching frequency

M. Seeman and S. Sanders, "Analysis and optimization of switched-capacitor dc-dc converters," *IEEE Trans. Power Electron.*, vol. 23, no. 2, pp. 841–851, Mar. 2008.

Hybrid SC Converter

Efficiency improvement

- Larger capacitors voltage ripple is allowed
- Capacitor values can be reduced
- f_{sw} can be lowered to reduce switching losses

Y. Lei, R. May and R.C.N. Pilawa-Podgurski, "Split-Phase Control: Achieving Complete Soft-Charging Operation of a Dickson Switched-Capacitor Converter," *IEEE Trans. Power Electron.*, vol. 31, no. 1, pp. 770-782, Jan. 2016.

System Architecture

- Hybrid 4-to-1
 Dickson converter
 - 8 power MOSFETs
 - 3 flying capacitors
 - 1 output capacitor
 - 1 inductor
 - Gate driver (GD)
- Level shifter (LS)
- V_{out} regulation
- Cap. balancing

Package – High Current Density

Capacitor Area Reduction

- Conventional boot-strap GD consumes considerable on-die C_B, e.g. C_B = 10C_{as}
- Low V_{gs} increases R_{ds,on} per area

Voltage Borrowing Technique

- Powered by existing flying capacitors
 - No extra capacitor needed
 - No extra voltage supply circuit needed

Ringing Reduction

- Too fast transition: large ringing
- Too slow transition: low efficiency
 - Low V_{gs} increases conduction loss
 - Worse if running at higher switching frequency

Segmented Gate Driver

- Ringing reduction w/o sacrifice of efficiency
 - Weak driver first slows down the transition
 - Strong driver then raises V_{GS} at a faster rate so that the switch reaches the low R_{ds,on} sooner

Die Micrograph

65nm bulk CMOS process

Measured Efficiency

V_{in} = 4.2 V, L = 180 nH, DCR = 24 mΩ

Measured Efficiency

V_{in} = 4.2 V, L = 470 nH, DCR = 8 mΩ

Performance Comparison

Performance Comparison

Conclusion

- First CMOS implementation of a hybrid Dickson SC converter
 - High power density and efficiency for high step-down
 - Good for low-voltage loads powered by Li-ion batteries
- Capacitor area reduction
 - Floating gate driver and level shifter are powered by the flying capacitors themselves
- Ringing reduction w/o sacrifice of efficiency
 - Segmented gate driver uses both slow and fast drivers

Acknowledgements

 This work was supported in part by US Army Research Lab (ARL), Texas Instruments and Systems on Nanoscale Information fabriCs (SONIC)

Questions ?

Voltage Borrowing Technique

- Selected voltage
 - High enough to turn on switches with low R_{ds,on}
 - Within switch voltage ratings

