Solar panels mounted on picnic table to power outlets for charging cell phones, tables, etc.The SPOT project is a completely student-designed and -implemented outdoors table retrofitted with solar panels used to charge an off-grid solar energy system. The plan is to provide students a space to sit and study outside while charging their devices (cellphones, tablets, laptops, etc.) using solar energy, and allow them to interact with solar energy first-hand through the panels right in front of them. A QR code on the SPOT will direct students and registered student organization (RSO) leads to a website detailing design and construction plans. This will allow students and other RSOs to replicate the project or parts of it. The website will also include instructions to create an off-grid solar energy system, one of the most easily customizable and accessible types of solar-energy projects for anybody with an introductory understanding of electronics.
The current design includes four 185W BP solar panels with a 24V 50AH battery bank. Solar panels were made available by the ECE Power and Energy group. Power will be supplied via standard 3-prong outlets and USB ports, which will output standard 60H alternating current. With sufficient charge in the battery bank, the system can simultaneously power four laptops and four tablets. From 100% battery charge (without solar panels), the system can charge (from 0 to 100%) the average laptop 9 x, cellphone 30 x and tablet 18 x, on estimate. The electrical system was reviewed by Professor Philip Krein.
The structural design includes a commercially purchased recycled plastic picnic table, two 4” galvanized poles and solar panel mounts, custom-made concrete blocks (to stabilize the poles), and outlet bases. We are working with Facilities and Services (F&S) to ensure the structure is up to code. The system will also be grounded using two 8’ grounding rods.
The SPOT project is funded by the UIUC Student Sustainability Committee. The InSPIRE RSO is sponsored by Professor Eric Benson, College of Art and Design. The electrical design and construction of the solar energy system was done in the ECEB Open Lab, and concrete work for the structural design in Newmark lab. The location will likely be on the north quad, with approval from the F&S Architectural Committee, local facility managers near the proposed locations, and other relevant officials. Construction is expected early fall 2020.
The project team branch of the InSPIRE RSO currently consists of ten members from Grainger Engineering, ACES and other colleges. As of March 2020, most of the structural design was completed and the off-grid solar energy system tested outside for about one month.