
Software Development Guide for Modular Inverter
Design Document Issue 003 TU0003

Design Document

Software Development Guide for Modular Inverter

Reference: TU0003

Issue: 003
Status: Issued V1.0

Author: Guoliang Zhang
Updated by: Ali Bazzi / Paul Rancuret

Principal Investigator: J. Kimball
Created: April 2, 2005

Updated: November 23, 2010

Abstract:
This document is intended to archive the modular inverter control software architecture, which is
based on Matlab/Simulink Embedded Coder for TI C2000 toolbox. Some customized functions are
described in detail.

This document also serves as instruction manual for power lab users that may use the modular
inverter to develop digital motor control algorithms or other related applications. A fully functional
example is included at the end of this document and links to the related files are provided.

Some useful resources are listed in the appendix to help users locate necessary knowledge base that
are required to fulfill advanced functionalities.

Software Development Guide for Modular Inverter
Design Document Issue 003 TU0003

Document Revision History

Issue Date Comments

001 2/17/2006 First release
002 3/3/2006 Added Flash part, updated TOC
003 11/23/2010 Added Recommendations for Advanced Applications

Contents

1. Introduction ... 3

1.1 Overview and Scope .. 3
1.2 Definitions... 5
1.3 References ... 5

2. User Interface ... 6
2.1 Matlab/Simulink Environment Setup .. 6
2.2 Developing Control Model in Simulink ... 9

2.2.1 Fixed Point Datatype ... 9
2.2.2 IQ Math Library and DMC Library ... 11
2.2.3 Simulation ... 12
2.2.4 Integrate I/Os and core functions of the DSP into the control .. 12

2.3 Generate Code and Run It on DSP ... 13
2.4 Errors, Faults and Exceptions .. 13

2.4.1 Board name mismatch .. 13
2.4.2 Could not find target board ... 13
2.4.3 Model contains ADC blocks won’t work under internal memory mode........................... 14
2.4.4 Over-run detected ... 14

3. A Step-by-Step Example ... 15

4. Create Flash Based Project .. 16

Software Development Guide for Modular Inverter
Design Document Issue 003 TU0003

1. Introduction

1.1 Overview and Scope

EZdsp2812 is a board made by Spectrumdigital.com that utilizes a TI TS320F2812 DSP core. Full
description on this chip can be found at TI.com. Some of the key features of this DSP controller
are:

• Extended Temperature Performance of
−55°C to 125°C

• Three 32-Bit CPU-Timers

• 128-Bit Security Key/Lock
− Protects Flash/ROM/OTP and L0/L1
SARAM
− Prevents Firmware Reverse Engineering

• High-Performance Static CMOS
Technology

− 150 MHz (6.67-ns Cycle Time)
− Low-Power (1.8-V Core @135 MHz, 1.9-V
 Core @150 MHz, 3.3-V I/O) Design • Motor Control Peripherals

− Two Event Managers (EVA, EVB)
− Compatible to 240xA Devices • JTAG Boundary Scan Support

• High-Performance 32-Bit CPU (320C28x)
− 16 x 16 and 32 x 32 MAC Operations
− 16 x 16 Dual MAC
− Harvard Bus Architecture
− Atomic Operations
− Fast Interrupt Response and Processing
− Unified Memory Programming Model
− 4M Linear Program/Data Address Reach
− Code-Efficient (in C/C++ and Assembly)
− 320F24x/LF240x Processor Source Code
 Compatible

• Serial Port Peripherals
− Serial Peripheral Interface (SPI)
− Two Serial Communications Interfaces
(SCIs), Standard UART
− Enhanced Controller Area Network
(eCAN)
− Multichannel Buffered Serial Port
(McBSP)

• 12-Bit ADC, 16 Channels
− 2 x 8 Channel Input Multiplexer
− Two Sample-and-Hold
− Single/Simultaneous Conversions
− Fast Conversion Rate: 80 ns/12.5 MSPS

• On-Chip Memory
− Flash Devices: Up to 128K x 16 Flash
(Four 8K x 16 and Six 16K x 16 Sectors)
− ROM Devices: Up to 128K x 16 ROM
− 1K x 16 OTP ROM
− L0 and L1: 2 Blocks of 4K x 16 Each
 Single-Access RAM (SARAM)
− H0: 1 Block of 8K x 16 SARAM
− M0 and M1: 2 Blocks of 1K x 16 Each
 SARAM

• Up to 56 General Purpose I/O (GPIO) Pins

• Development Tools Include
− ANSI C/C++ Compiler/Assembler/Linker
− Code Composer Studio IDE
− DSP/BIOS

• External Interface (2812)
− Up to 1M Total Memory
− Programmable Wait States
− Programmable Read/Write Strobe Timing
− Three Individual Chip Selects

• Boot ROM (4K x 16)
− With Software Boot Modes
− Standard Math Tables

http://focus.ti.com/docs/prod/folders/print/sm320f2812.html�

Software Development Guide for Modular Inverter
Design Document Issue 003 TU0003

Code Composer Studio (CCS) for C2000 is the software development tool for this DSP. Current
version is V2.21. It is recommended to have only one CCS installed on one computer to avoid any
confliction between applications.

Matlab/Simulink provides the automated code generating tool for this DSP family. Users can
communicate with the DSP via Matlab Link for CCS. Under most cases, users should develop their
control algorithms in Simulink and use the automatic RTW tool to generate/build/download the
code to target DSP and run the executable program in CCS.

To use the digital controller system effectively and efficiently, certain skills/knowledge are
required. Based on the complexity that might get involved during the development, two levels of
users are defined:

Level 1: Control Algorithm developers

Example: motor control algorithm, digital pwm algorithm, filter designs, etc.

You need to have knowledge on

• basic usage of Matlab/Simulink

• fixed point data type, IQ math(just another form of fixed-point defined by TI)

• discrete time signal processing -specifically, discrete time integration, sample/hold,
 delay, Z transform.

• PWM parameter settings

• Hardware configuration on the modular inverter and its control board.

• Matlab GUI is a plus

• Real-Time multitask scheduling is a plus.

Level 2: Expanded function developers

Example: DAC, Communication, Stand alone applications, etc. Especially when your needs are
beyond the capability provided by our library functions.

Except requirements to level 1 users, you also need knowledge on

• C/C++ and Library functions for C281x provided by TI.

• S-Function in Matlab/Simulink

• RTW(Real-Time Workshop) and TLC(Target Language Compiler)

• Hardware on TI 320F2812 DSP is a plus.

This document focuses on level 1 user. References will be provided to help level 2 users locate the
necessary recourses.

A knowledge tree below shows the required skills/knowledge and their relationships for each group
of users. Bold text indicates key skill needed for that group of users. Real Time Data Transfer
function is only available with the update of CCS 2.20+ and Matlab R14 SP2+.

Software Development Guide for Modular Inverter
Design Document Issue 003 TU0003

E m b e d d e d T a r g e t
f o r T I C 2 0 0 0 D S P

T o o lb o x

M a t la b L in k t o
C C S

M a t la b F ix e d p o in t
T o o lb o x

R T W a n d
E m b e d d e d C o d e r

S - F u n c t io n a n d
T L C

D is c r e te B lo c k s

R e a l T im e
D a ta

E x c h a n g e

C o d e C o m p o s e r
S t u d io

e Z d s p 2 8 1 2 B o a r d w i t h T I 3 2 0 F 2 8 1 2

R S 2 3 2

M a t la b G U I

P W M

S C IA

P a r a l le l
P o r t

A D C G P IO E X T -
M E M

L e v e l
1

L e v e l
2

E x te r n a l H a r d w a r e s

S im u l in k

C /C + +

D S P
H a r d w a r e

B u i ld o p t io n s
/L in k e r c m d

Figure 1 Knowledge Tree

1.2 Definitions

TI Texas Instrument

DSP Digital Signal Processing

CCS for C2000 Code Composer Studio, a software development tool for F281x provided by TI

UUT Unit Under Test

1.3 References

F2812 family Home --- http://focus.ti.com/docs/prod/folders/print/sm320f2812.html

http://focus.ti.com/docs/prod/folders/print/sm320f2812.html�

Software Development Guide for Modular Inverter
Design Document Issue 003 TU0003

2. User Interface

2.1 Matlab/Simulink Environment Setup

User will develop control algorithm under Simulink environment. To successfully run the process,
several toolboxes are required. They are: Fixed Point Toolbox, RTW toolbox, Embedded Coder
toolbox and Embedded Coder for TI C2000 Toolbox. Type “ver” at Matlab command window to
see if all of those toolboxes are installed on the computer you plan to work on. We have one license
for each toolbox for the whole group. Also, a Microsoft VC6.0 should be installed on the computer.

Upon opening the Simulink Library browser, an “Embedded Target for TI C2000 DSP” item
should show up on the left, all the build-in functions can be found under this group of library
modules.

Software Development Guide for Modular Inverter
Design Document Issue 003 TU0003

The first thing to do after creating a blank model under Simulink is to choose the F2812 eZdsp
target from “C2000 Target Preference” library. Now there should be a blank Simulink model
window with target preference block, it should look like this:

This block contains options for target board hardware configuration and compiler/linker
preferences. You need to change some of the options to make it like this:

You might need to change the DSPBoardLabel option according to CC_SETUP definition. See
2.4.1 for more information. Other un-shown items should be kept as default.

Software Development Guide for Modular Inverter
Design Document Issue 003 TU0003

Next Step is to configure the model parameters. Since the embedded software is running
periodically forever, we need the model to be implemented in discrete time with no continuous
state. Stop time should be inf under most cases. The solver setup page should be like:

Notice that the fundamental sample time must be fastest sample time in the model and all other
blocks can only be run at integer times this rate. Faster tasks (blocks) have higher priority.

Another page need to be configured is the Real-Time Workshop preference. It will look like this
after you change the RTW system target file name to “ti_c2000_ert.tlc” from the
Browse…window.

Software Development Guide for Modular Inverter
Design Document Issue 003 TU0003

This finishes the configuration of the model. It is recommended to set the sampling color and data
type of each port display options on from the simulink model window toolbar \Format\Port and
Signal Displays option.

2.2 Developing Control Model in Simulink

In this part, we describe some key concept to build a control model.

2.2.1 Fixed Point Datatype

Assume you are familiar with the fixed point data concept. In Simulink, to assign certain datatype
to a specific block is done by changing signal/parameter settings in the block property tab. For
example, we want to use a 32bit fixed point gain of 3.14159, and want 1/100000 resolution on the
output within +/-2000. Then we need to setup the signal data type and parameter data type as:

Software Development Guide for Modular Inverter
Design Document Issue 003 TU0003

And

32 ^-19 gives a resolution about 2e-6 for the fractional part of a 32bit number. And integer part
gives us the range of 0 to +/- 4096, which would satisfy our requirements.

Important: it is crucial to have all signals that may flow in the model/control be falling into the
data range you have defined. It is especially true when dealing with discrete integrators because
the stepsize in our model are usually very small. Rule of thumb: use 32 ^-16 for all arithmetic
operations, use 32 ^-26 for critical integrator internal signals. Notice that 32 ^-26 have the integer
part range from -32 to 32 only, it’s important not to have it overflow.

Software Development Guide for Modular Inverter
Design Document Issue 003 TU0003

2.2.2 IQ Math Library and DMC Library

Under Simulink Library Browser, you can find C28x IQmath Library and DMC Library under
Embedded Target for TI C2000 DSP toolbox. These are functions that would generate much more
efficient code than using common Matlab blocks.

When choosing arithmetic operation blocks, you should always use the one from IQmath library
instead the ones from Simulink Block sets. For example, to implement a gain, instead of using the
gain from Simulin\Math Operations\Gain, you should use a constant with proper data type and an
IQN x IQN or other multiplication functions under IQmath Library. In the DMC Library, there are
transforms that have already been implemented in an integrated block format.

Some other functions like filters, discrete integrators should be implemented by blocks from
Simulink\Descrete library.

Software Development Guide for Modular Inverter
Design Document Issue 003 TU0003

2.2.3 Simulation

After a model is built, the next step is to simulate the system to see if the control is functional as
expected and we might need to make necessary changes to the parameters or control structure.

The simulation is no different than an ordinary Simulink model simulation. You can use the scopes
and display blocks. You should be able to use any analysis tool provided in Simulink environment.
When simulating controller with continuous plant model, choose proper solver in the simulation
configuration page.

2.2.4 Integrate I/Os and core functions of the DSP into the control

It is recommended that the user to keep two copies of the model: One for simulation purpose and
one for actual code generation purpose. The unit under test (UNT) should be kept identical in the
two models.

In the code generation model, we replace the dummy/test inputs from simulation model with
interface blocks that are supported by this DSP. We also remove the non-codable blocks which
includes all continuous blocks and display blocks for simulation purpose only.

The I/O blocks are under C2800 DSP core support tab in the library browser.

Complete descriptions on these blocks can be found in the help files.

Software Development Guide for Modular Inverter
Design Document Issue 003 TU0003

2.3 Generate Code and Run It on DSP

If all the software/toolboxes are installed properly and board configuration is correct, by clicking
on the “build” button on top of the Simulink window, an automated process would be invoked and
the code should have been built in CCS. Then an active CCS project should appear on the left side
project manager window. In theory, the processor needs to be reset before loading the code into the
target DSP. In practice, it might not be necessary. To load and run the program, select File/Load
Program… from CCS main window, the modelname.out executable file usually appears by default.
Otherwise, you should be able to locate it manually under modelname_c2000_rtw/ directory. After
the code is loaded in the DSP successfully, press F5 or choose “run” button to run the program on
the target. If the target stops immediately after a run command, you might need to do File/Reload
Program… and run it again. The code generation may take around 1-2 minutes depending on the
complexity of the model and the computer you are using.

Explanations on some terms in this stage:

Generate Code: Matlab Target Language Compiler (TLC) to compile the Simulink model into C
code and other resources needed by later process.

Create CCS Project: Matlab TLC creates a project file and include all necessary resources into the
modelname_c2000_rtw directory.

Build: CCS C compiler is invoked to compile the project source files into .obj files.

Link: CCS Linker links all .obj files, library files from TI library into one executable
modelname.out file.

Load: CCS loader load the modelname.out file to the RAM on DSP according to the linker
command file modelname.cmd, which was generated by Matlab during “Generate Code” stage.

2.4 Errors, Faults and Exceptions

Some common errors, faults, exceptions and their possible causes are presented in this section.

2.4.1 Board name mismatch

Symptom: After clicking the “Build” button, error message saying board name not matching the
label defined in Target Preference Block.

Cause: Board name defined in target preference block is different than that from CC_setup.

Solution: Change the target preference board information to whatever indicated by error message.

2.4.2 Could not find target board

Symptom: After clicking the “Build” button, error message saying cannot find board.

Cause: May caused by power loss on the target when Matlab is still running.

Solution: Make sure the power is connected to the board then reset the board from CCS
Debug/Reset Emulator. Then go to Matlab command window and type >> clear CCS_Obj.

Software Development Guide for Modular Inverter
Design Document Issue 003 TU0003

2.4.3 Model contains ADC blocks won’t work under internal memory mode

Symptom: Loading error in CCS. Or the program is not running as expected if ADC is used and
internal memory mode is selected in target preference block.

Cause: Bug in Matlab when generating the model.cmd file. A DSECT is declared to a section that
would be used in ADC initialization. A DSECT-ed code section will not be loaded to the DSP
RAM by the loader.

Solution: 2 ways, either one will work:

1, go to C:\MATLABroot\toolbox\rtw\targets\tic2000\tic2000\src and open DSP281x_usDelay.asm
file with any text editor, comment out the line of .sect "ramfuncs" with “;”.

2: go to C:\MATLABroot\toolbox\rtw\targets\tic2000\tic2000 and open
ti_c2800_cmd.tlc with any text editor, find the line of:
ramfuncs : > PRAMH0, PAGE = 0, TYPE = DSECT

Cross out the “, TYPE = DSECT” part of this line. So it looks like:
ramfuncs : > PRAMH0, PAGE = 0

2.4.4 Over-run detected

Symptom: After several tries of clicking the “run” button, the program goes to “Halt” position
repetitively.

Cause: Over-run is detected, CPU overloaded.

Solution: Increase the stepsize in the model and recompile. Make sure that there are no unnecessary
double precision or non-lookup-table type trigonometric functions in the model.

3. Recommendations for Advanced Applications

3.1 ADC and RTDX Issues

The number of ADC and RTDX channels in a Simulink block diagram affects that maximum
allowable sampling rate (Ts) that can be used on the DSP. The ADC has two main ports, A and B,
each having eight channels. While the maximum allowable rates are given in the eZdspF2812
datasheet, these do not reflect actual implementations in advanced applications that require
significant processing. It is advised that the minimum number of ADC channel is used to achieve
higher sampling rates. The reason this is true is that every ADC port, i.e., A or B, has a
multiplexed structure. This means that the multiplexer needs enough time to fetch ADC data for
the DSP to process it appropriately.

A similar problem exists with RTDX channels, and sampling rates might be even slower in this
case. RTDX channels communicate in real time between the DSP registers and MATLAB, thus
significant lag exists between on these hardware-software interface channels. Higher sampling
rates can be achieved with less RTDX channels.

Software Development Guide for Modular Inverter
Design Document Issue 003 TU0003

When the sampling rate is high compared to what the DSP can handle for a given number of ADC
and RTDX channels, a block diagram might still compile without errors or warnings. But, when it
is run using Code Composer Studio or a MATLAB GUI, the DSP will crash. This can be noticed
with the “Enable” LED flashes (this LED is on the power stage front panel). A recommended
practice is to start with a relatively low sampling rate, if possible for a given application, and then
increasing the rate until reaching the sampling limit.

Note that an essential step in building a Simulink block diagram using the real-time workshop is
that sampling rates should be multiples of each other. Down sampling and over sampling a signal
is always possible with the “rate transition” Simulink blocks if this step is obeyed.

Sampling might pose to be a problem when high sampling rates are required, e.g., having an
estimation loop that is significantly faster than the controller.

For ADCs, signal-to-noise-ratio (SNR) is a very sensitive factor that needs to be considered
especially in advanced applications such as ripple-based control. SNR can be enhanced with
appropriate communication cable wiring and filtering — analog filtering on the control board and
digital filtering on the DSP.

3.2 Memory

The flash memory on the eZDSP TMS320F2812 DSP is limited to 128K words. In most
applications, this is plenty of program memory. However, with some advanced applications, it may
be very important to conserve memory as this limit is approached.

With field-oriented control of an induction motor, for example, it may be necessary to have many
embedded control laws to perform separate functions simultaneously using similar information.
Steps should be taken to ensure that the program does not have redundant calculations. For
instance, if two sections of your program need to know the currents in the d-q frame, have one
outside block of your program calculate these currents in the d-q frame, and use these values in
both sections. Do not have each section compute the d-q currents separately.

It is also very easy to use up memory words when filtering vector signals. It is recommended to
use the lowest order filter to achieve the goal, especially with vector signals. A second order filter
for a three-element vector uses much more memory than a first order filter.

Memory may also be saved by ensuring that constants are never stored more than once in memory.
For instance, if several pieces of your program require multiplication by 180, only store the number
180 once and refer to it by both blocks in the program. In Simulink, these means using only one
‘Constant’ block for the number 180. You can then connect this single block to both subsystems
which need to use the value 180.

4. Examples

4.1 V/Hz Example

SW00025 folder contains documents (including this one) that are dedicated to the modular inverter
control software architecture, which is based on Matlab/Simulink Embedded Coder for TI C2000

Software Development Guide for Modular Inverter
Design Document Issue 003 TU0003

toolbox. The eZdspLib.zip file contains the matlab code and model needed for Modular Inverter
dsp software generation and execution.

Extract the file to a folder that you are working under, and make sure this folder is included in the
matlab path setting. Keep the HyperTerminal file some where convenient for easy access. Navigate
in the matlab path selection tab and make the current work directory is your matlab
pth/eZdspLib/VperHzTest. Two models are provided. One is using Serial communication the other
is using RTDX communication. ezdsp2812_vphz32 is to be used with the HyperTerminal file you
extracted earlier. ezdsp2812_vphz32_wRTDX is used with .m file under the same directory.

4.2 Flux Estimation Example

Refer to the following paper for a summary of software and hardware requirements in a flux
estimation example using the modular inverter:

A.M. Bazzi and P.T. Krein, "Comprehensive Flux Estimator Implementation Procedures For
Advanced Control Of Inverter-Fed Induction Machines," How2Power Today Online
Magazine/Portal, June 2010.

5. Create Flash Based Project
SW00025 also contains a Flash_Based.zip file. It is the project that derived from V/Hz project in
the example but suitable to run as stand alone program.

To make a project generated from Matlab flashable. Follow the steps listed below:

i. Replace the .cmd file generated from Matlab/Simulink with the one in Fash_Based.zip
.cmd file. Change the file name to your project name.

ii. Add two files to the project by right click on project_name and choose Add files… in CCS:
coecsl.c and DSP281x_CodeStartBranch.asm

iii. Add one line in YourProjectName_main.c in main() so that it looks like:

void main(void)
{
 init_COECSL(); // memcpy from Flash to RAM

 init_board();
…
}

iv. Right click on project name, choose Build Option… click on Linker tab; change one of the
linker options from –cr to –c.

v. Change the jumper 7 position from 2-3 to 1-2 on the DSP board.

vi. Re-compile and build the project under CCS. DO NOT RECOMPILE UNDER
SIMULINK, OTHERWISE YOU LOSE ALL YOUR WORK.

Software Development Guide for Modular Inverter
Design Document Issue 003 TU0003

vii. Instead of “loading” your program to the RAM, now you need to use flash programmer
under CCS tools to burn the flash.

viii. After the process is done, reset the DSP and it should go.

NOTES:

1. All work in this chapter is not related to Matlab/Simulink any more. Work solely under CCS.

2. CCS software package that comes with the boards doesn’t have a functional flash programmer.
Need to update the flash API patch, which can be obtained from c2000flashprogsw_v112.zip
under SW00025 directory. Or please check the latest version of CCS.

3. To save your work, change the directory name so that Matlab/Simulink won’t erase it next time
you recompile your model. Move it to a safer place.

4. Don’t forget to change the jumper back to its original position when done.

!!! important information for upgrading the system !!!

as of 24th of May 2006, two ezdsp systems has been upgrade the Matlab to R2006a.

several known problems and solutions:

1. CCS 3.1 is required. we have one on exchange drive.

2. some blocks not backward compatable. if there is an error (example the pwm blocks) or

warning, read carefully and replace the old block with new one. save your work before you

do so since once saved in later vresion, cannot go back easily.

3. internal mem map loading issue. if experience difficulty when loading the file in CCS, try

following:

open installationDir\toolbox\rtw\targets\tic2000\tic2000\ti_c281x_cmd.tlc

find the following text

...

%% Function: constructSectionAllocationx281xDSP ================================

%%

%function constructSectionAllocationx281xDSP() void

%openfile sectionAllocation

SECTIONS

{

 codestart : > PRAMH0, PAGE = 0

Software Development Guide for Modular Inverter
Design Document Issue 003 TU0003

 .text : > PRAMH0, PAGE = 0

 .cinit : > PRAMH0, PAGE = 0

 ramfuncs : > PRAMH0, PAGE = 0

 .reset : > RESET, PAGE = 0, TYPE = DSECT

%if (c2000ModelIRInfo.numRTDXs != 0)

 .rtdx_text : > PRAMH0, PAGE = 0

%endif

...

add a line assigning memory for .pinit after .cinit assignment so it looks like

%% Function: constructSectionAllocationx281xDSP
================================
%%
%function constructSectionAllocationx281xDSP() void

%openfile sectionAllocation

SECTIONS
{
 codestart : > PRAMH0, PAGE = 0
 .text : > PRAMH0, PAGE = 0
 .cinit : > PRAMH0, PAGE = 0
 .pinit : > PRAMH0, PAGE = 0
 ramfuncs : > PRAMH0, PAGE = 0
 .reset : > RESET, PAGE = 0, TYPE = DSECT
%if (c2000ModelIRInfo.numRTDXs != 0)
 .rtdx_text : > PRAMH0, PAGE = 0
%endif

	1. Introduction
	1.1 Overview and Scope
	1.2 Definitions
	1.3 References

	2. User Interface
	2.1 Matlab/Simulink Environment Setup
	2.2 Developing Control Model in Simulink
	2.2.1 Fixed Point Datatype
	2.2.2 IQ Math Library and DMC Library
	2.2.3 Simulation
	2.2.4 Integrate I/Os and core functions of the DSP into the control

	2.3 Generate Code and Run It on DSP
	2.4 Errors, Faults and Exceptions
	2.4.1 Board name mismatch
	2.4.2 Could not find target board
	2.4.3 Model contains ADC blocks won’t work under internal memory mode
	2.4.4 Over-run detected

	3. Recommendations for Advanced Applications
	3.1 ADC and RTDX Issues
	3.2 Memory

	4. Examples
	4.1 V/Hz Example
	4.2 Flux Estimation Example

	5. Create Flash Based Project

